Reimagining the Strandbeest as a Compliant Mechanism

By Conor Bergin

I am designing a singley actuated walking robot. The robot should be powered
by a single motor and should walk at a constant speed in a straight line. How do you turn a rotational motion into a linear one?
The obvious answer is a wheel. If you need to walk, however, you need a inkage which will transform the circular motion into a sort, of seme-i-irccle, the
oot must lift off the ground, reach foward and then pull back. By dividing the robot into independant legs and driving them with a crankshaft, only one
planar linkage needs to be designed. This is how the Jansen and Klann mechanisms work.

opliane

To further complicate things, I decided that it would be a good idea to make he linkage out of a single piece of material, instead of rigid joints it would have flexible ones. The advantage of being made from a single epiece of material is it can be made in one operation, and as it it is a planar mechanism,
it can be made in any thickness and any size, only the x and y geometry needs to be consistent. Using 3D printing, I can test and improve my linkages very quickly.

How do you design a compliant mechanism?

Compliant mechanisms are much more difficult to model than rigid body mechanisms. There are several approaches, the most obvious being the Fin Element Method with a 3 D mesh of the part. This is accurate, but computationally expensive. We can simplify the problem by turning our mechanism into a system of 1 D beams with rigid connections, allowing us to use Euler-Bernoulli beam equation:

$$
M=E I \frac{d \theta}{d s}
$$

Normally we would replace the curvature with the 2nd derivative of y in

$$
M=E I \frac{d^{2} y}{d x^{2}}
$$

This substitution is only valid for small deflections because the length of he beam is't constant, so we have to use the original equation. Unfortunately the ODE problem that arises once we define our boundary
conditions is still complex. It's faster than FEM, but its still too slow.

Using the Psuedo Rigid-Body Model

A less accurate, but far simpler method is creating a Pseudo Rigid-Body
Model and solving that A PRBM is kinematically similar rigid-body model Model and solving that. A PRBM is kinematically similar rigid-body mode will use two distinct PRBMs, a simple joint to represent a small flexure and a three link mechanism that represents a compliant parallel linkage Figure 3. I compare the PRBM to the ODE solutions at different
displacements. The paths are very close despite the large deflection, and considering the how much it simplifies the problem this is an excellent

We can now design the mechanism as if it were a rigid body model, with a few

 limitations1. Deflections should be minimised, the PRBM becomes increasingly
2. Only two bodys can use a pivot, because in reality that pivot is in the middle of a beam

Because this is a difficult problem I wanted to use an existing mechanism as a starting point.I hade two choices, the Jansen Mechanism and the Klann
Mechanism, both popular planar walking linkages.
decided to use the Jansen mechanism, used in Theo Jansen's Strandbeests, as a starting point for my own linkage because the deflections at the joints were smaller, meaning I would have to do less work to turn it into a compliant

Firstly I separated all the joints that would overlap in a compliant mechanism. This
only affected two joints. only affected two joints.

Secondy I adjusted the legths of the members until I had satisfactorily small
deflections at all the joints.
After changing the geometry the path of the foot had been significantly affected. Sol generated the paths for 100 different configurations of the foot dimensions, the plots for these can be eseen in Figure 6. It looked like the optimal path was between the two paths seen in Figure 7 , sol interpolated between them to get the
final path seen in Figure 8 . Though completely functional, it is worse than the original path, but considering how many parameters there are in the mode and that I was only changing 2 at a time, this was expected.

I could then draw a compliant mechanism using my PRBM in CAD and do an FEM
analysis to verify my design. worked backwards from the rules I used to make analysis to verify my design. Worked backwards from the rules I used to m
the PRBM, I replaced the parallel rigid mechanism with the kinematically equivalent parallel compliant mechanism, replaced the 3 remaining joints w compliant hinges, and then filled in the gaps with volumes large enough to not
influence the overall deflection. I then generated a mesh and ran the solver fo influence the overall deflection. I then generated a mesh and ran the solver for 12
different displacements, of which 6 can be seen opposite, next to the equivalent different displacements, of which 6 can be seen opposite, next to the equivalent
PRBM. I recorded the displacement at the foot and plotted it so I could compare it PRBM. I recorded the displacement at the foot and plotted it so I could compare
with the path of the PRBM. As can be seen in Figure 9 . the FEM path has lost some of properties, it doesn't lift as high off the ground and the contact part of the cycle is less flat.
\square

Further work:

Find a way to optomise the PRBM properly, at the moment it is too time consuming to change more than two parameters at one time.

Use an ODE solver to solve the mechanism as a system of large displacement
beams. There might be potential to topologically optimize the mesh to the exact displacements required, skipping all of the prerequisite steps Dynamically analyze the mechanism so the motor wastes less torque overcoming the internal forces.

